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Adaptive Controllers and Robustness Analysis for
Curve Tracking with Unknown Control Gains

Michael Malisoff

Abstract— We study adaptive control and parameter identifi-
cation for robotic curve tracking under unknown control gains.
We build adaptive controllers that identify the unknown control
gains and stabilize equilibria corresponding to a fixed constant
distance to the curve and zero bearing. Our strict Lyapunov
function method allows us to prove robust performance under
actuator errors in terms of integral input-to-state stability
under a bound on the disturbance that maintains forward
invariance of a class of invariant hexagons. This extends
existing curve tracking results to allow controller uncertainty
and parameter identification. We demonstrate our work in
simulations.
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I. INTRODUCTION

Curve tracking methods have proven to be effective for
navigating mobile robots in complex environments [5], [15],
[17]. For wheeled mobile robots, feedback control laws have
been developed that achieve autonomous tracking of obstacle
boundaries or a desired smooth path [10]. There were several
recent improvements for curve tracking control [11]. These
include extensions to the three dimensional case [3] and
cooperative control for ocean sensing [16], [18].

Evidence of robustness in real life applications has been
reported for farming, obstacle avoidance in corridors, and
ocean sampling [4], [16], [19]. Our previous work [7]
theoretically justified the robustness by showing that the
feedback control laws for two-dimensional curve tracking
from [17] provide input-to-state stability (ISS) properties
with respect to additive uncertainty on the controller. We
proved robust forward invariance of a nested sequence of
hexagons H; C H, C H; C .. that fill the state space. This
produced a sequence of positive constants {5;*} such that the
following holds for all i: all trajectories of the curve tracking
dynamics that start in H; and have uncertainties bounded
by & remain in H; for all positive times. Then we proved
ISS of the curve tracking dynamics on each hexagon H;,
with respect to disturbances bounded by &;. This theoretical
understanding is important for giving predictable tolerance
and safety bounds for the curve tracking control laws. See
[12]-[14] for background on ISS.

This paper continues our search for robust controller de-
signs for curve tracking dynamics that respect the constraints
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that prevail in real time experimental implementations. We
are motivated by our recent deployment of a fleet of marine
robots at Grand Isle State Park, Louisiana which surveyed
residual crude oil components from the Deepwater Horizon
oil spill disaster [2]. In this application, we implemented
curve tracking behaviors on two different marine robots with
unknown actuator parameters. We implemented the curve
tracking control laws from [7], [17] by testing different
control gains, and the experimental results will be reported
in other publications.

However, the control laws in [7], [17] would be more
applicable to real systems if they could be made adaptive
to unknown actuation parameters. In this paper, we present
an adaptive controller design that can be implemented on
the marine robots. We also prove that the adaptive control
laws are integral ISS (iISS) with respect to actuation errors.
Our adaptive curve tracking result is based on an extension
of the barrier Lyapunov function approach from [9] to
systems with state constraints, combined with an adaptive
version of the robust forward invariant hexagon argument
from [7], and includes parameter identification. It differs
from the usual adaptive control problem of stabilizing an
equilibrium point while keeping the estimate of the unknown
parameter bounded, which is more common in the literature.
For complete proofs of all results to follow, see [8].

II. NOTATION AND DEFINITIONS

A continuous function ¥ : [0,4oe0) — [0,+oc0) is of class
J (written y € %) provided it is strictly increasing and
¥(0) = 0; if, in addition, y(r) — 4o as r — oo, then it is
of class %, (written ¥ € ). A continuous function 3 :
[0,400) X [0,4+00) — [0,+<0) is of class £ .Z (written B €
A %) provided (i) for each fixed s > 0, the function B (-,s) €
2 and (ii) for each fixed r > 0, the function B(r,-) is non-
increasing and B(r,s) — 0 as s — +oo. Let % be any subset
of a Euclidean space such that 0 € %, and let .#4, denote the
set of all measurable locally essentially bounded functions
0 :[0,4) — %. Let |f|s denote the essential supremum
of the restriction of any function f to any subset . of its
domain.

Consider any subset ¢ of a Euclidean space and any point
& € 9. A continuous function ¥ : 4 — [0,+o0) is positive
semi-definite with respect to & provided ¥ (&) = 0; if, in
addition, ¥ (g) > 0 for all ¢ € 4\ {&}, then ¥ is positive
definite with respect to &. A function ¥ is negative semi-
definite (resp., definite) with respect to & provided —7 is
positive semi-definite (resp., definite) with respect to &. Let
|p|s = |p— &] denote the distance between any point p € ¢




and the point & in the usual Euclidean metric. A function ¥ :
4 — [0, +o0) is a modulus with respect to (&,%) provided it
is positive definite with respect to & and radially unbounded
in the following sense: For each constant M > 0, there is a
constant &y > 0 (depending on M) such that ¥ (x) > M for
all x € 4 that satisfy either distance(x,boundary(¥¢)) < 8 or
|x|&# > 1/8p. For any subset . C R" and any point p € R",
weset S —p={q—p:qe€.S}.

Consider a forward complete system X = .% (x,8) with
state space ¢ and disturbances 6 € .#y, where % : 4 x
U — ¢ satisfies the standard existence and uniqueness of
solutions properties for all initial states xo € ¢ and all dis-
turbances 6 € .#y [6], and .Z (&,0) =0. Let ¥ C ¥ be any
neighborhood of &. We say that the system is integral input-
to-state stable (iISS) with respect to (% ,&,.”) provided
there are functions 8 € % and ¥; € /. and a modulus A
with respect to . such that y; (|x(z,x0,6)|e) < B(A(x0),1) +
Jo2(18(r))dr for all + > 0, all solutions x(¢,xp,8) of the
system with initial states xo € ., and all 6 € .#y . This
agrees with the usual iISS condition from [1], [13] when
¢ =.=R" and & = 0. The special case of iISS where
% only depends on x and the integral term in the iISS
estimate is not present is global asymptotic stability (GAS)
with respect to (&,.%). In that case, a nonstrict (resp., strict)
Lyapunov function for the system with respect to (£,%) is
any modulus ¥ with respect to (£,%) that is C' on some
open set containing ¢, and that is such that the function
¥ .9 — R defined by ¥ (q) = V¥ (¢).Z (¢) is negative semi-
definite (resp., definite) with respect to &. A set ¥ C ¥ is
robustly forwardly invariant for the system with disturbances
in % provided all trajectories of the system starting in .&
with disturbances 8 € .#7 remain in . for all positive
times.

III. PROBLEM FORMULATION

We can show from physics principles that the curve
tracking dynamics of marine robots on the surface of water
can be simplified to the equations [17]

{p = —sin(¢)
6 =

2208 ol
where p is the relative distance, ¢ is the bearing, k is the
(positive) curvature at the closest point, u, is the steering
control, the control gain K, > 0 is constant (and possibly
uncertain), the perturbation é € .4 represents controller un-
certainty, and the state space is 2" = (0,+o0) X (—7/2,7/2).
While (1) is feedback linearizable using the new state vari-
able z = sin(¢), the feedback linearized system does not
respect the state space and so cannot be used [7].

Assuming that K> is known, the work [17] designed a
feedback control law to achieve asymptotic stabilization
of an equilibrium state corresponding to constant distance
(p = po > 0) and zero bearing (¢ = 0), which occurs when
the robot moves parallel to the curve. We call this case the
nonadaptive case.

However, K, depends on the vehicle design and the
environment, and therefore is unknown in most applications.

(D

In this paper, our goals for an adaptive control law are to have
K5 identified in addition to achieving p — pg and ¢ — 0 as
t — oo from all initial states, when & = 0. Then, we would
like to establish iISS properties for the closed loop dynamics
with respect to & under the adaptive control law. This is more
challenging than what has been addressed in our previous
works [7], [17] because K, is unknown, and because we must
simultaneously show integral ISS properties with respect to
0 and identify K.

We solve this adaptive stabilization and parameter iden-
tification problem using a variant of the barrier nonstrict
Lyapunov function and ‘strictification’ methods from [9].
The methods from [9] include parameter identification and
integral ISS results with respect to disturbances. However,
[9] cannot be applied to (1) directly, since we must ensure
that its trajectories (p(¢),¢(¢)) remain in Z2". Therefore,
we provide a variant of the invariant hexagon argument
from [7] that ensures robust forward invariance of suitable
hexagons for the adaptive dynamics, under maximum bounds
on the perturbation 6. This allows us to use the barrier
Lyapunov function and strictification approach from [9] to
get the stabilization, parameter identification, and integral
ISS, which would not be possible using earlier methods.

IV. REVIEW OF NONADAPTIVE CASE

We next review the controller design from [17] and the ISS
and strict Lyapunov function results from [7]. The controllers
in [7], [17] have the form

uy = 5F248) — () cos(9) + sin(9) @)

where (L > 0 is a steering constant. In [7], & is any function
that satisfies the following two assumptions:

Assumption 1: The function h : (0,4e) — [0,4o0) is
C?, I has only finitely many zeros, lim, o+ h(p) =
limp_, 4 h(p) = +oo, and there is a constant py > 0 such
that h(pg) = 0. O

Assumption 2: The function / satisfies Assumption 1 and:

(i) There is an increasing C' function y: [0, +o0) — [i, +o0)
such that y(h(p)) > max {it,14+0.5u>+4"(p)} for all
p>0.

(ii) There is a function T" € %, NC' such that T'(h(p)) >
[H(p)]? for all p > 0.

(iii) The function '(p)(p — po) is positive for all p > 0 with
P # Po.

Here pp > 0 is from Assumption 1. ]

Remark 1: The arguments in [7] show that Assumptions
1-2 hold for

hp)=af{p+2 —2p} 3)

from [17] for any constants & > 0 and py > 0, if we take
¥(q) = 2(q+2apo)?/{a’pi} +1+0.5u> +u and I'(q) =
ola+ () (g2)d*. O
The works [7], [17] assume that K, = 1, in which case
substituting (2) into (1) produces the closed loop system
6 = H(p)cos(9)—usin(9)
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on Z = (0,4o) x (—7/2,w/2) when no perturbation
is present. Under Assumption 1, [17] shows GAS of (4)
with respect to ((po,0),.2"), using the nonstrict Lyapunov
function

V(p,9)=—In(cos(¢)) +h(p) (5)

for (4) with respect to ((pg,0),2") and LaSalle Invariance.
For robustness, the arguments from [7] show that (4) admits
the strict Lyapunov function

1

Vip.9)
—H(p)sin(0)+ & [ ylm)am
L(V(p.9))+V(p.9)

U2(p’¢)

(6)

with respect to ((po,0), Z") when V is given by (5). In fact,
along all trajectories of (4) in 2", we have U, >V and

U < —05[H(p)cos(e)]* —sin’*(9)

~IM(V(p, ) + 1]

cos(¢) ?
whose right side is negative definite with respect to (po,0).
This allowed us to prove ISS results with respect to additive
uncertainty on the controller, under certain restrictions on the
magnitude of § that maintain forward invariance properties.

(7

V. ADAPTIVE CONTROLLER DESIGN

We aim to extend [7] to the constant speed adaptive
curve tracking dynamics (1) where K> is to be identified
(but see Remark 3 below for a further extension involving
adaptive speed control with unknown control gains). In
practice, positive lower and upper bounds for K, are known.
Therefore, we assume the following in the rest of this paper:

Assumption 3: There are known constants ¢, > 0 and

Cmax > 0 such that ¢, < Kp < Cpax- O
Following [9], we take the update law
T(Z = (k2 - Cmin)(cmax - §2)67 (8)

where the estimator 1?2 for the parameter K, has the state
space (Comins Cmax) and the locally Lipschitz function U is to
be specified.! Denoting the adaptive controller by v gives

— —sin(9)
6 = Fel oy ks ©)
1?2 - (I/(\Z - cmin)(cmax - EQ)U

with state variables (p,¢,K>). Choosing v = u /K, and U =
—(dU,/d¢)v, where uj is the controller from (2) and U, is

'A simple uniqueness of solutions argument shows that each trajectory
of (8) starting in (Cmin, Cmax) TEMAINS iN (Cin, Cmax) at all positive times. To
see why, suppose that K, (1) were a solution of (8) starting in (Cmin, Crmax)
that reached cmax at some positive time 7. Then the time reversed system
would admit two distinct solutions for the initial state cmax on [0,7], namely,
the constant solution at cpmax and 7 — K, (7 —1), contradicting the uniqueness
property for solutions. Similar reasoning applies to the other endpoint cpy;y.
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the strict Lyapunov function from (6), gives the augmented
tracking and parameter estimation dynamics

p = —sin(9)

6 = (-8)%s (10)
2 [1(p) cos(9) — wsin(9)] — Kab

[?2 = —(EZ_Cmin)<cmaX KZ)%%Z o

We wish to establish GAS and iISS properties for (10). How-
ever, the desired state space 27 = (0,4o0) x (—7/2,7/2) X
(Cumin, Cmax) Will not be forward invariant for (10) unless we
impose restrictions on the magnitude of 6. To see why,
choose the initial states (p(0),¢(0)) = (2po,0), any initial
value for 1?2 in [Cmin,cmax]> and the constant perturbation

Y

5:_ 1 Cmax

Cmin

(k4 1)+ o]

Cmin

and suppose that (p(r),(t),K(z)) were the corresponding
trajectory for (10) defined on [0, pg]. Then p(¢) > po for all
t €10,p0], so W' (p(t)) > 0 for all ¢ € [0,po]. Hence, ¢(t) >
— (k4 ) —Kyb > 2 for all ¢ € [0, po], which would
give ¢)(po) >m/2. We furn to our restrictions on & next.

VI. FORWARDLY INVARIANT HEXAGONS

We extend the forwardly invariant hexagon arguments
from [7] to the adaptive dynamics (10), which will lead
to iISS results for (10) under suitable restrictions on the
magnitude of §. Since there is no disturbance in the K>
dynamics in (10), maintaining forward invariance of .2"” only
involves the (p,¢) subdynamics

p = —sin(¢)
6 = cos(0) |55 (1-2)+ 2rip)| (2
_%usin(qs)_z@a

of (10), where K, and its estimator K> both lie on (Crmins Cmax )
as before. We now add the assumption that the function A
satisfying Assumptions 1-2 also satisfies:

Assumption 4: The function h satisfies lim,_,o+ h'(p) =
—oo and liminfy . /'(p) > 0. Also, h”(pg) > 0. O

Notice that Assumption 4 holds for the choice (3) of &
for any choices of its constants o« > 0 and pg > 0. Using
Assumption 4, we can choose a sufficiently small constant
P« > 0 and a sufficiently large constant K > 0 such that

p*e(O,HCm‘:%) and K>1+@ (13
hold, and such that
min {|K'(p)|:ps <p < B} > K(%y (14)
and
min{h’(p) :Kpo < p ng} > 1+1:?p0 (Znﬁ)z’ (15)
where By = p.(1+Cpax/Cmin) and Dy = KPo+PsCrmax / Conin- (TO

see why we can satisfy (13)-(15), let Iy denote the liminf
from Assumption 4. The left side of (14) goes to +oo as



\

¥ B

Fig. 1. Forwardly Invariant Hexagon ﬁ(p*7u,?) in (p,¢) Plane

P« — 07 so we can satisfy (14) for small enough p, > 0,
while the left side of (15) is above Ip/2 if K is large enough.
Then we can satisfy (15) by taking K big enough to make
the right side of (15) less than Iy/2.) Our condition on K
ensures that Kpy > By. Pick any constant u € (0,7/(2p.))
such that

W (p.) > (w4 Wl 06)
by choosing p close enough to but below 7/(2p.).

Let H(p.,u,K) denote the region in the (p,¢) plane that
is bounded by the hexagon having vertices A = (p,,0), B=
(Bi,up+), C = (D1,ups), D = (D1,0), E = (Kpo, —pp+),
and F = (p«,—Ups). Its legs AB and ED have the slope
;,Lﬁ = Cminll/Cmax- These hexagons agree with the ones for
the nonadaptive case in [7], except that the tilted legs in [7]
have slope u. For each compact subset & of 2" = (0, +e0) x
(—m/2,7/2), we can choose p., K, and u to satisfy (13)-
(16) and to be such that 2 C H(p., ,K). This can be done
by moving p, > 0 far enough to the left and Kpy far enough
to the right, and making u large enough and close enough to
7/ (2p.) so that the hexagon approximates a rectangle whose
top and bottom are as close as desired to +7/2. See Fig. 1.
Given any compact subset 2 C 2, our work will establish
robust forward invariance of any hexagon that contains Z.

To simplify the analysis, we set

Ql(Pv‘PJ?z,Kz) =
cos(9) (1+pr KK2 + th’(p /.Ltan )
0:(p, 9. K>, K>) = Ql(P 9, Kz,Kz)+uﬁsm(¢>

We use the following lemma [8]:
Lemma 1: For all constants K; € [¢mins cmax] and K, €
[€mins Cmax]» We have: (a) Q1(p,9,K2,K>) < 0 (resp., > 0) for

all (p,¢) € BC (resp., FE). (b) Q2(p,,Ks,Kz) < 0 (resp.,
> 0) for all (p,¢) € AB (resp., ED). O
By Lemma 1, the following constants are positive:

A =
min{’Ql(p7¢7K27K2>‘/K2:
(p7¢) € BCUEF7 KZ € [Cminacmax]; E2 € [Cmimcmax]}

and

a7

(18)

A** -
min{|Q2(p7¢7K2aK2)|/K2 :
(p,$) EABUED, K € [Coin Cmax)y K2 € [Coiny Conan]}

19)

Fix any constant 0, € (0,min{A,,A..}). We prove the fol-
lowing robust forward invariance result for (12):

Theorem 1: Let Assumptions 1-4 hold. Let p, and K be
any constants satisfying (13)-(15). Choose any constant y €
(0,7/(2p4)) satisfying (16), any constant K> € [€mins Cmax )
any function K3 : [0,%0) = [cmin,Cmax], and any measurable
function § : [0,00) — [—0,,6,]. Then all trajectories of (12)
starting in H(p.,it,K) stay in H(p,,u,K) for all t >0. O

Proof: We prove that for each such trajectory (p,¢)(t)
of (12) starting in H(p., u,K), the vector field (p,¢) points
into the hexagon along all six legs of the hexagon, so the
trajectory cannot leave the hexagon. By part (a) of Lemma 1,
we have ¢ = Q) —K»8 < Q1+ K, 8, < 0 on BC because 8, <
A.. Along FE, part (a) of Lemma 1 gives ¢ = Q; — K8 >
Q1 — K>6, > 0 along FE, again because 6, < A,. Hence,
the trajectories point down (resp., up) along the top (resp.,
bottom) leg. Along AF, we have p > 0, except at the point
A. At A, we have p =0 and (]) < 0, because &, < A,x, which
makes p increase. Along the leg CD, we have p <0, except
at D. At D, we have p =0 and ¢ > 0, because &, < A.s,
which makes p decrease. Hence we cannot exit the hexagon
though its top, bottom, or vertical legs.

To rule out exits through the tilted legs, we use .#(p,¢) =
¢ — u*p. For each pair (p,¢) € 2, the value . (p,¢) is the
¢-axis intercept of the line through (p,¢) having slope u?,
so the theorem will follow once we show that .# < 0 (resp.,
I > 0) along AB (resp., ED). Since 0, < A, it follows
from part (b) of Lemma 1 that along AB, we have .¥ =
Q> — K70 < 0. This rules out exits along AB. Again using
part (b) of Lemma 1 and the fact that 8, < A,,, we also
have .# = 0, —K»8 > 0 for all (p,¢) € DE. This rules out
exits along DE, completing the proof. [ ]

Remark 2: Given any function h satisfying Assumptions
1, 2, and 4, the bound min{A,,A,,} is the supremum of all
possible perturbation bounds that render H(p., i, K) robustly
forward invariant for (12) for all K, and all signals I?QN(t),
and therefore is optimal. In fact, for each constant & >
min{A,,A,.}, we can find a point p on the boundary of
H(p.,1u,K) such that the trajectory of (12) starting at p for
one of the constant perturbations =6 and some admissible
choices of K> and 1?2 exits the hexagon. To see why, note that
if min{A,,A,.} =A,, andif § > A,. = —01(p,0,K»,K>) /K>
at some p = (p,¢)" € AB, then taking the constant dis-
turbance § = —§ gives I = 02(p, 90, Kz,Kz) —|—K25 >0 at
P, so we exit from p. On the other hand, if § > A,, =
0:(p,0,K>,K>) /K, at some p=(p, q)) € ED, then taking
the constant disturbance § = & gives .% = 05(p, 9, K>, K>) —
K25 < 0, so we again exit at p. The other cases where
min{A,,A..} = A, are handled similarly. Hence, for each
choice of h, our bound &, is optimal for maintaining the
necessary invariance properties of H(p.,u,K) for (12) and
not at all conservative, and our controller is independent of
the choice of the hexagon. ]

VII. INTEGRAL INPUT-TO-STATE STABILITY

_The preceding section shows that for each hexagon
H(ps«,1,K) and each bound &, on the admissible actuator



error O satisfying the requirements from Theorem 1, the
augmented tracking and parameter estimation dynamics

—sin(q2)
Keos(@)
1+x(q1+po)

_(EQ - Cmin)(cmax -

(20)

with state variables ¢ = (¢1,¢2)
disturbances & valued in % =
forward invariant set

2" = (H(p., u,K) = &) x

Here u; is the controller from (2), U, is the strict Lyapunov
function from (6), and we subtract the equilibrium & =
(P0,0) in (21) to account for going from the original curve
tracking dynamics for ¢ = (p, @) to the error dynamics for
g. It is therefore meaningful to ask whether the dynamics

= (p_
Os,

Po,9) and K, and
[—6., 6]

has the robustly

2y

(Cmim Cmax) .

gy = —sin(q2)
4 = lf#%— 2+~ uz—K25 (22)
EZ = _(E2+K2_Cmin)( Cmax K2 I<2)M m

) gz-‘v—Kz

for (7,K2) = (p — po,9,K> — K») is iISS with respect to
(% ,0,2°%) with the choices % = [—3,,8.] and
%‘ﬁ = (ITI(P*MLL,E) _éa) X (Cmin _K27cmax _KZ)a (23)

since this would give stabilization of the equilibrium point
(po,0) and parameter identification when 6 =0, as well as
robustness in the sense of iISS on each hexagon. This is
much stronger than local stabilization, because the hexagons
can be arbitrarily wide. In [8], we use ideas from [9] to prove
that the iISS property is indeed satisfied. Here we summarize
the ideas behind our iISS result. Throughout this section, we
fix a hexagon H(p.,i,K) and a corresponding disturbance
bound &, as in Theorem 1, so all disturbances & are valued
in % = [-0.,0:]. To simplify the notation, we sometimes
denote the hexagon simply by H.

Following [9], we first take the barrier nonstrict Lyapunov
function Us : 2°% — [0, +o0) defined by

U3(57E2) = B
U2 (3+ (po,0)) + J32

A partial fraction decomposition shows that the integral in
(24) can be rewritten as

(24)

l
(6+Kr—cmin) (cmax—(—K2) de.

Cmax —Kp —K)
cmax —K>

Ko +Kp —Cmin
KZ —Cmin

Cmin—K>

Cmax —Cmin

_ _Cmax -k In
Cmax —Cmin

and so is a modulus with respect to (0,%') where % =
(Cmin — K2, Cmax — K2 ). Moreover, the decay estimate (7) along
all trajectories of (4) gives

Uy < ~05[H(p)cos(9)]” —sin*(9)
~[CV(p.9) + 1]l — K, %% (p,9)6

along all trajectories of (22). Since K»(dU,/d¢) is bounded
on 2%, condition (25) resembles the iISS Lyapunov function

(25)
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decay condition [1], save for the fact that its right side is
not negative definite in the full state (g,K,) when & = 0.
Also, the adaptive arguments from [9] do not apply directly
because of the restricted state space and the actuator error.
On the other hand, we can use U; to prove [8]:

Theorem 2: Let h, p,, U, K, and 8, satisfy Assumptions
1-2 and the requirements of Section VI. Then (22) is iISS
with respect to ([—6,,8.],0,2°%). O

Remark 3: The preceding analysis assumed that the speed
of the robot is constant. However, we can extend it to include
adaptive speed control. For details, see [8]. ]

VIII. SIMULATIONS

To illustrate our stabilization, parameter identification, and
iISS results, we simulated (22) with the choice

h(p)lO(erll)Z).

This satisfies our assumptions with o« = 10 and pg = 1; see
Remark 1. We used the functions y and I' from Remark 1
to generate the adaptive controls. We also took cpin = 0.5,
cmax = 0.75, k =2, p, = 0.12, u = 0.9957/(2p.) = 13.025
and K = 10, which give the hexagon H(0.12,13.025,10) C
Z . These parameter values satisfy our requirements (13)-
(16). Using the notation from above, our assumptions are
satisfied with 6, = 0.103671. In our first simulation, we took
the initial values (¢, K3,K>)(0) = ((0.2,0.4),0.2,0.7) and the
disturbance 6 =0 and obtained the trajectory components for
(¢,K>)(t) in Figure 2, which shows rapid convergence of the
state and parameter estimation errors to zero. Our second
simulation was the same as our first, except we included
the sinusoidal disturbance &(¢) = 0.1sin(¢). In Figure 3,
we show the simulated trajectory for g(t) for the second
simulation. We do not show the K, trajectory for our second
simulation with the disturbance, because it was the same
as for the undisturbed case. With the nonzero disturbance,
the errors g(¢) no longer converge to zero. Instead, there
is a small overshoot in ¢(¢), which is made precise by the
corresponding overshoot in the iISS estimate. This illustrates
the effects of introducing a disturbance in the adaptive
stabilization and parameter estimation dynamics.

(26)

IX. CONCLUSIONS

Adaptive stabilization and parameter identification for
robotic curve tracking models with unknown control gains
under controller uncertainty is a challenging problem that is
beyond the scope of the standard adaptive control methods.
This is due to the restricted state space, the need for strict
Lyapunov functions for the augmented stabilization and
estimation dynamics, and the need to identify the parameters
instead of merely ensuring that the parameter estimate stays
bounded. We used recently developed barrier Lyapunov func-
tion and strictification approaches to solve the stabilization
and parameter identification problems and prove robustness
under controller uncertainty in the sense of integral input-to-
state stability. We aim to extend our work to curve tracking
problems under time delays, and to three-dimensional curve
tracking.
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